Maths for Computing Assignment 5 Solutions

1. (5 marks) Prove that if P and Q are longest paths (of the same length) in a connected graph, then P and Q have at least one vertex in common. Give a detailed proof.
Solution: Let $P=\left\langle v_{0}, v_{1}, v_{2}, \ldots, v_{n}\right\rangle$ and $Q=\left\langle u_{0}, u_{1}, u_{2}, \ldots u_{n}\right\rangle$ be any two longest paths of length n. For the sake of contradiction, suppose P and Q do not have a common vertex. Further, assume that n is even (proof for odd n is similar).

Since the graph is connected, some vertex on P must have a path to some vertex on Q. Let R be a path from v_{i} on P to u_{j} on Q such that none of the non-ending vertices of R are on P or Q. Path P can be split into two paths, say S and T, from v_{0} to v_{i} and v_{i} to $v_{n^{\prime}}$ respectively. We can say that one out of S and T will be of length at least $n / 2$. Otherwise, the sum of the lengths of S and T, i.e., length of P, will be less than n, which is not possible. Similarly, Q can be split into two paths, say L and M, from u_{0} to u_{j} and u_{j} to $u_{n^{\prime}}$ respectively. And one out of L and M must be of length at least $n / 2$.

Suppose S and L are of length at least $n / 2$. Then we can concatenate S, R, and reverse (L) to create a path of length more than n, which is not possible as longest paths are of length n in G. Hence, a contradiction. Similarly, for other possibilities where S and M, T and L, or T and M are the paths of length at least $n / 2$, we can create a path of length more than n.
2. (5 marks) Prove that if G is a disconnected graph, then \bar{G} is connected.

Solution: Let $G_{1}, G_{2}, \ldots, G_{k}$ be the connected components of G. Now, in \bar{G}, consider any two vertices x and y. We show below that there will be a path between them.
Case 1: If x and y are in different components in G, then there cannot be an edge between them in G, and thus there will be an edge between them in \bar{G}. Hence, $\langle x, y\rangle$ will be a path between x and y.
Case 2: Suppose x and y are in the same component in G, say G_{i}. Since G is disconnected, there must be more than one component in G. Therefore, there will be some other component G_{j} with a vertex w in it such that there are no edges from x to w and y to w in G. Hence, in \bar{G}, there will be edges from x to w and y to w, creating a path from x to y.
3. (5 marks) Let M be a maximal matching and M^{\prime} be any matching in a graph G. Prove that $|M| \geq\left|M^{\prime}\right| / 2$.

Solution: For the sake of contradiction, suppose $|M|<\left|M^{\prime}\right| / 2$.

Let $\left|M^{\prime}\right|=k$ and $\left\{v_{i}, u_{i}\right\} \in M^{\prime}$, for every $i \in[k]$. We claim that for some $j \in[k]$, both v_{j} and u_{j} are uncovered by M, and hence M is not a maximal matching as we can add $\left\{v_{j}, u_{j}\right\}$ to it. If the claim is not true, then for every $i \in[k]$, either v_{i} or u_{i} are covered by M. But this implies that M is covering at least k vertices, which is not possible as $|M|<\left|M^{\prime}\right| / 2$ $=k / 2$ and a matching of size $<k / 2$ can cover less than $2 * k / 2=k$ vertices.
4. (5 marks) Prove that a tree always has more leaves than vertices of degree three.

Solution: We will prove it using induction on the number of vertices.

Basis Step: For the tree of one vertex, the statement is trivially true.
Inductive Step: Let T be a tree of $k+1$ vertices. Let u be one of the leaves of T and v be its only neighbour. From inductive hypothesis, in $T-u$, the number of leaves, say j, is more than the number of vertices with degree three, say k, i.e., $j>k$.

We now argue that for T as well the statement is true by putting back u in $T-v$ to get T. Note here that T has only one more vertex, u, from $T-u$, and among the rest of the common vertices, degree of only v differs in T and $T-u$.
We divide the rest of the proof based on the degree of v in $T-u$.

Case 1: When degree of v is 0 :
T in this case will have two more leaves, u and v, than $T-u$. Also the number of vertices with degree 3 will not change from $T-u$ to T. Therefore, the number of leaves in T is $j+2$ and the number of vertices with degree 3 in T is k. Clearly, $j>k \Longrightarrow j+2>k$.

Case 2: When degree of v is 1 :
T in this case will have the same number of leaves as $T-u$ as v will not be a leave in T but u will be. Again the number of vertices with degree 3 will not change from $T-u$ to T. Therefore, the number of leaves in T is j and the number of vertices with degree 3 in T is k. We know that $j>k$.

Case 3: When degree of v is 2.
T in this case will have one more leave, u, than $T-u$. The number of vertices with degree 3 will increase by 1 from $T-u$ to T as v 's degree will change from 2 to 3 . Therefore, the number of leaves in T is $j+1$ and the number of vertices with degree 3 in T is $k+1$. Clearly, $j>k \Longrightarrow j+1>k+1$.

Case 3: When degree of v is 3 .
T in this case will have one more leave, u, than $T-u$. The number of vertices with degree 3 will decrease by 1 from $T-u$ to T as v 's degree will change from 3 to 4 . Therefore, the number of leaves in T is $j+1$ and the number of vertices with degree 3 in T is $k-1$.
Clearly, $j>k \Longrightarrow j+1>k-1$.

Case 3: When degree of v is ≥ 4.
T in this case will have one more leave, u, than $T-u$. The number of vertices with degree 3 will not change from $T-u$ to T. Therefore, the number of leaves in T is $j+1$ and the number of vertices with degree 3 in T is k. Clearly, $j>k \Longrightarrow j+1>k$.
5. (5 marks) Prove that Petersen graph does not contain two perfect matchings M and M^{\prime} such that $M \cap M^{\prime}=\varnothing$. You can use the results proved in class or tutorials without proving them again. (Hint: The length of the smallest cycle in Petersen graph is 5.)
Solution: Let M and M^{\prime} be two disjoint matchings of the Petersen graph. Remember we proved in the tutorial that the graph made from the original vertices of the graph and edges of $M \oplus M^{\prime}$ has either isolated vertices or even length cycles as its components. $M \oplus M^{\prime}$ has 10 edges. We will now show that the graph of original vertices and edges $M \oplus M^{\prime}$ cannot contain a cycle of length $2,4,6,8,10$. Thus, it is not possible to have two disjoint matchings in Petersen graph.

Cycle of length 2 is not possible because parallel edges are not allowed in the definition of graphs. Cycle of length 4 is not possible as Petersen graph does not contain a cycle of length less than 5. (You can use the hint without proving it, although proof is easy.)

Cycle of length 6 is possible, but the other 4 edges have to form a cycle which is not possible. Similarly, cycle of length 8 is not possible as other two edges cannot form a cycle of length 2 .

We now have to show that there is no cycle of length 10, i.e., there is no hamiltonian cycle in Petersen graph.

Suppose there is a hamiltonian cycle, say $C=\left\langle v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}, v_{9}, v_{10}, v_{1}\right\rangle$. Now Petersen graph contains 15 edges. Out of 15 edges, 10 edges are used in the hamiltonian cycle. We will prove now that we can not put the remaining 5 edges in the cycle without creating a cycle of length less than 5 .

Let's name the remaining 5 edges as $e_{1}, e_{2}, e_{3}, e_{4}$, and e_{5}. Suppose every edge of the remaining edges is connecting the opposite vertices, say e_{1} connects v_{1} and v_{6}, e_{2} connects v_{2} and v_{7}, e_{3} connects v_{3} and v_{8}, e_{4} connects v_{4} and v_{9}, and e_{5} connects v_{5} and v_{10}. In such a case, we can easily spot many 4 length cycles, such as $\left\langle v_{1}, v_{6}, v_{5}, v_{10}, v_{1}\right\rangle$. Hence not all edges can connect opposite vertices of C.

Also, if some e_{i} connects two vertices who are at distance 3 or less in C, then that will also create a cycle of length less than 4.

Hence, there must be an edge e_{k} that connects two vertices, say v_{i} and v_{j}, that are at distance 4 in C. But now we cannot add an edge to the vertex opposite to v_{j} (or $\left.v_{i}\right)$, say $v_{k^{\prime}}$ without creating a cycle of length 4 or less. But there should be an edge apart from the two edges of hamiltonian cycle on v_{k} as degree of every vertex of Petersen graph is 3 .
6. (5 marks) Petersen graph is non-planar. Prove it using Kuratowski's Theorem.

Solution: We can prove Petersen is non-planar by showing that it contains a subdivision of $K_{3,3}$. The below graph is clearly a subgraph of Petersen graph. It is also a subdivision of $K_{3,3}$. Red and green are the original vertices of $K_{3,3}$ such that there is an edge between every pair of red and green vertices. Black vertices are introduced by subdividing 4 out of 9 edges of the graph.

